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Essentially all 

models are wrong,

but some are 

useful. 

- George E. P. Box



Objective

Today

 Determine which students have 

the highest and lowest

probability to return to the 

College for their second year. 

Project

 Share an effort to utilize 

predictive analytics.

 Get feedback on how 

to make it better.  
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About DTCC

 14,000 Students

 Four Campuses

 Offer 86 unique 
programs

 AAS Degree

 SEED Scholarship 
(Free College)

 30% Minority

 60% Female

 70% of students 
require at least 1 
developmental 
course
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Retention 
Trend
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Objective

Why make retention predictions?

Resource Allocation

Test the outcomes of experimental initiatives
Make smarter decisions
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Strengths 
and 
Limitations

STRENGTHS

 Complete Control of 
the Model 

 Develop custom data 
that may not be 
collected in traditional 
SIS or LMS

 Ability to deploy it in 
the most cost 
effective way

 Agility to change it as 
needed

LIMITATIONS

 Limited to data we 
can process

 Scalability
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Background 
Research

 Tinto (2006) –Ways 
students interact with 
social and academic 
environments influences 
whether or not they 
withdraw

 Bogard 2011 - Data 
throughout four points of 
the semester to predict 
student success. Each shift 
in time increased the 
predictive ability of the 
model

 Mack Sweeney et al. have 
attempted to utilize a 
recommendation system 
to predict student course 
success and retention 
(Sweeney 2016). 

 Herzog 2006 - utilized a 
decision tree model and 
Neural Networks to 
predict student degree 
completion time. His 
study found that Decision 
Trees and Neural 
Networks performed at 
least as well as regression 
models

 Herzog also found that 
these algorithmic 
approaches did better at 
predicting more 
experimental variables 
such as time to 
completion than the 
regression models. They 
found that a combination 
of random forest and 
factorization machines 
was able to accurately 
predict student grades for 
new and returning 
students. 
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Methodology
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Data 

Wrangling

“Data Scientists 

spend 60 percent 

of their time as 

digital janitors”

Data Set 1 Data Set 2 Data Set 3 Data Set 4

Student 
Demographic 
and Outcomes

Student Course 
Success

Student 
Tutoring Lab
Interactions

Student 
Educational 
Plan

Number of 
Variables 
Created

27 Variables 7 Variables 3 Variables 19

Processing 
Method

SQL SQL, R SQL, R SQL

Raw Data 
Dimensions

11,381 rows
30 columns

544,933 Rows
37 columns

14,800 rows
21 columns

11,361 rows
20 columns
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Variable 
Selection

Follow me on social media: @datadanlarson

Program Fall Earned Credits Caring for Dependents Computer Access 
at home

Start Term Fall GPA Transportation Issues

Gender Spring Earned Credits Concerned about Paying for School Number of 
Withdraws

Race/Ethnicity Spring GPA Commitments Outside of School Time Status

Age Summer Earned Credits Work Demands Attempted 
Credits including
Developmental

Campus Summer GPA Limited Timeframe to Complete

First Term Credits 
Attempted

Pell Amount Received Developmental Course Work

Remedial Count Number of Program
Changes

Concerned about Academic Ability

College Ready Complete Students 
Educational Plan

In Reading

Attempted Student 
Success Course

First Year Credits Earned 
(With Developmental)

In Writing

Student Success Course 
Grade

Visits to Tutoring Center In Math

Attempted College Level 
Math

Time Spent with Tutor First Generation Student

Completed College Level 
Math

Average Time with Tutor Uncertain about Major

Attempted College level 
English

Number of course
attempts

Uncertain about decision to attend 
college

Completed College Level 
English

Number of As, Bs, Cs, and 
Fs

Internet Access at home



Exploratory 
Analysis

• Total Cases – 11,381
• Total Variables: 56
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Variables 
that Matter
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Variables 
that Matter
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Variables 
that Matter
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Variables 
that Matter
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Random 
Forest

 To improve the decisions tree model, many 

machine learning experts utilize Ensemble Learning 

methods that generate classifiers and aggregate 

their results. (Liaw and Wiener 2002). 

 The Random Forest method, reduces the number 

of variables used by creating multiple trees and 

aggregates them thereby providing a more 

accurate predictions (Leo Breiman 2001). 
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Model 1: 
Using Pre-
registration 
info

 Type of random forest: classification
 Number of trees: 500

 No. of variables tried at each split: 3

 OOB estimate of  error rate: 38.07%

 Confusion matrix:

Predict
Leave

Predict 
Retain

Class
Error

Leave
College

1,987 2020 50.4%

Retained 1,211 3,270 27.0%
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Variables 
Selected
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The Second 
Model: End 
of First Term

 Type of random forest: classification
 Number of trees: 500

 No. of variables tried at each split: 3

 OOB estimate of  error rate: 21.07%

 Confusion matrix:

Predict
Leave

Predict 
Retain

Class
Error

Leave
College

2,983 1024 .2556

Retained 764 3717 .1705
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Variables 
Selected
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The Third 
Model: End 
of First Year

 Type of random forest: classification
 Number of trees: 500

 No. of variables tried at each split: 3

 OOB estimate of  error rate: 20.98%

 Confusion matrix:

Predict
Leave

Predict 
Retain

Class
Error

Leave
College

3,049 958 .2391

Retained 823 3,658 .1837
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Variables 
Selected
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The Test Data
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Future Steps

 Deploy the model for use by college advisors and 

faculty
 Monitoring/adjusting model as needed

 Collect data on communications with students

 Transition from predicting fall to fall retention to 

predicting term to term retention

 Integrating Learning Management System data
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Learning R or 
Python
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